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1. INTRODUCTION

One of the fundamental theorems of information theory is Shannon's coding theorem

(Shannon and Weaver 1949) for noisy channels. Using random coding arguments, Shannon

discovered the original version, and later, Fano (1961) stated it in a stronger version:

For any stationary channel with finite memory, a channel capacity
C can be defined having the following significance. For any binary
transmission rate R smaller than C, the probability of error per digit
can be made arbitrarily small by properly designing the channel encoder
and decoder. Conversely, the probability of error cannot be made
arbitrarily small when R is greater than C.

The average error probability of the best block codes on the noisy channel can be bounded

as follows:

p_<e E, (R)

where n is the length of a code word and E(R), the random coding exponent, is positive for all

rates R less than capacity C. The existence of such exponential error bounds indicates a useful

communications channel. Gallager (1965) pioneered a very elegant derivation of this random

coding exponent, using a novel upper bound to the error probability. In another paper, Forney

(1968) generalized Gallager's exponential error bounds for generalized decoding schemes,

namely decoding with erasure, list decoding, and decision feedback schemes. Much of this work

uses random coding arguments in which each input message is represented by a code word

constructed by selecting n symbols from an alphabet of independent, identically distributed

symbols. The error probability of the channel and coding scheme is averaged over the ensemble

of all randomly chosen codes, and there must be at least one nonrandom code with error

probability as small as the ensemble average.

In all of the previously mentioned papers and in most literature on information theory, the

assumption is that the statistical model of the noisy channel, expressed by the probability

transition matrix, is completely known (i.e., that the channel is statistically describable). The

capacities of channels which are not so describable have been investigated by Blackwell,



Brieman, and Thomasian (1960), Stiglitz (1967), and many others. A channel for which the

transition matrix can change with each use is often known as an arbitrarily-varying channel

(Blackwell, Breiman, and Thomasian 1960). Of potentially practical interest is the channel, also

not statistically describable, in which the probability transition matrix remains fixed over one code

word. This is the so-called *fixed unknown" channel (Blackwell, Breiman, and Thomasian 1960),

now called the "compound" channel (Gallager 1965).

By another approach, followed by Kazakos (1981) and elsewhere, various authors analyze

the performance of transmission through noisy channels when an inaccurate version of the

probability transmission matrix is used by the decoder. This is termed "mismatch." Kazakos

(1981) derived upper and lower bounds for transmission through channels in the presence of

mismatch. Kazakos (1981) also found the necessary and sufficient conditions for the error

probability of a random code to converge to zero with increasing block length. They were

expressed in terms of distances between the actual and assumed channel probability transition

matrices. In the present paper, we obtain exponential error bounds for generalized decoding

schemes of the type considered by Fomey (1968) but for the case of mismatch.

2. GENERALIZED DECODING

We consider a noisy, discrete channel chosen to be memoryless for the present report.

Generalizations will follow in subsequent work. Let

P {P(yk =bIxk = a) = p.; = 1,...,A;b = 1,...,Bl

b-1

be the transition probability matrix of the noisy channel. Let us consider a block code of block

size n, with the following code words:

{XI,X,...,XM};M = e;XM= (xm,...,Xmn),
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where R = rate of the code. The probability of receiving a block y = (y1, ...,yn) when Xm was

transmitted is as follows:

n
P(yIXm) = H P(Yj I Xmj) . (1)

J I

We will assume that all entries of P are positive, i.e.,

PO = min p, > 0 . (2)
,b

Ordinarily, maximum likelihood decoding selects the message m that maximizes the likelihood

P(y I X,). We assume that the prior probabilities r, of tie M code words are equal: ic = M.

Maximum likelihood decoding divides the decision space S into disjoint regions {R1,...,RM} by the

following:

y)E RmiffP(YIXm) > P(yIXv) for all v*m. (3)

In the present report, we will assume that an inaccurate version 0 of the true transition

probability matrix P is used in decoding. Let

0 = {2 (y, = bIxk = (x) = qb.;c=l,...,A;b = 1,...,B} (4)

be the entries of the r. ,inal probability transition matrix used in decoding. Naturally, qb Pb

for at least one pair of entries.

For maxirr-Jm likelihood decod. , under mismatch, the decision space S is separated into a
M

different set of disjoini ,egions (/l-.. M such that U R = S and R R= 0. These
i- 1

regions are defined by the following:

3



Y r Rm iffQ0(Y IXm) 2:0( ~I X,) for all v *m. (5)

(As indicated earlier, this is one form of the fixed unknown channel [Blackwell, Breiman, and

Thomasian 1960].)

Two generalized decision rules were considered by Fomey (1968). The first one is the

inclusion of an erasure option. In this case, an additional region Ro is included to represent the

event that no transmitted message is to be assigned to the received symbol because the value

of the latter cannot be known reliably; if y e Ro, we declare an erasure. Thus, M + 1 outcomes

are possible. The M + 1 regions {Ro, R1,...,RM} are disjoint and cover all the space S:

M

U R, = S,RlRj = O,i,j = 0,1,...,M.
1-0

Let E2 be the event of an undetected error; this is the event that y r Rm and that some code word

Xk, k * m was actually transmitted. That is, the decoder believes that it has correctly decoded

because it has produced a code word according to the decoding algorithm. However, the code

word thus produced is nt the code word that was transmitted. The probability of E2 can be

expressed as follows:

M
P[E2] = E I P(YIX)P(X). (6)

m. I ye R. k*m

Let E, be the event in- which the received word y does not fall in the decision region Rm

corresponding to the transmitted code word Xm; the probability of E, is as follows:

M
P[E, E E P(YIXm)P(Xm). (7)

m-1 ye R.

4



If El occurs, either an undetected error or an erasure must ensue; hence, the probability of an

erasure is as follows:

P[e] = P[E,] - P[E 2J ]0.

The problem in choosing the regions (R1, ... ,RM} is now formulated. We wish to minimize P[E]

for a given P[E2] or vice versa. It is clear that increasing Rm will increase P[E2j but decrease

P[E]; hence, we have a variation of the Neyman-Pearson problem (van Trees 1968).

The second type of generalized decoding is list decoding. Here, the decision regions {R 1,...,RM}

overlap; hence, for each received word y, a list of code words is produced. The list contains at

least one code word; the size of the list varies, as will be explained. The performance of list

decoding is evaluated through two event probabilities. A list error is the event in which the

transmitted code word is not on the list or, equivalently, in which the received word y is not in the

decision region Rm corresponding to the transmitted code word XM. This is the event El, with

probability given by Equation 7. The second probability, that some code word Xm will be on the

list, although some other code word Xk, k * m was sent, is as follows:

P(Xm on list and incofrect) E E P( Y I Xk) P( Xk)
ye R. k*m

The average number L of incorrect code words on the list is as follows:

M M

L E P(Xm on list and incorrect) = E E P(yIXk)P(XK) • (8)
ma1 mrl ye R,, ktm

We observe that the expression (Equation 8) for L is identical to the expression (Equation 6) for

P(E), where P(E2) is no longer a probability but represents L. In the sequel, we will use P[E 2]

to denote both cases.

5



Thus, we hz,., a unified formulation of decoding with erasure and list decoding. Forney

(1968) proved that the optimum regions {RI,...,RM} found under the criterion of minimizing

Equation 6 under constant of Equation 7 or vice versa are as follows:

Rm{=;1y; P(Y I X) P(Xk) ]1P(yI Xm)P(Xm) nT} (9)

where n - block length and T = an arbitrary parameter.

An equivalent way of describing the decision regions (Equation 9) is through the posterior

probabilities P(Xm I y).

ye RmiffP(Xm Iy)u , (10)

where u = enT [ 1 + en)- .

In ordinary decoding, we decode into the code word Xm for which P(Xm I y) is greatest. With

the erasure option, we guess the code word Xm for which P(Xm I y) is greatest, so long as

P(Xm I y) 2 u, u 2 112. This corresponds to T > 0. With list decoding, to minimize the average

list size for a given list error probability, we put on the list all code words for which P(Xm I y) 2! u,

u < 1/2. This corresponds to T < 0.

Thus, the regions Rm defined by Equation 4 are optimal for regular decoding (T = 0), list

decoding, (T< 0and overlapping), and decoding with erasure option (T> 0). Note that in order

to define the decision regions R,, we need to know the probability transition matrix P. In the

mismatch situation, we utilize 0 instead of P. We assume, for simplicity, from this point on, equal

prior probabilities: P(X) = M 1 ; hence, the decision regions (under mismatch) are as follows:

6



RM= Y;[kEmQ(Ylxk)]-' Q(YiXm)>e n ,

where Am denotes the decision region based on mismatch. For 0 = P, we have Am = Rn"

3. BOUNDS UNDER MISMATCH

We will now generalize Fomey's upper bounds for the mismatched case. We have the

following two probabilities to upperbound:
M

P[E 1] = E E P(YjX,.), (12)
m-1 y A,

M

P[E 2]= M E E P(yIXk). (13)
m- 1 ye A ksm

Let us define the following functions:

SmASm(Y)a E P(yXk),
k*mn

ZmA Zrn(Y)A E Q(YIX)i
-k*mZ,,,_Zn(yI),FQyX)

Q. = Q( Y I X,,)

and

P,, P(y Xm).

Note that

Y2Sr(y) = E Z(y) = M - 1 (14)
y y

7



Hence, if we divide Sm(Y) and Zm(y) by M-1, they become probability distributions; more

specifically, they become mixtures of M-1 distributions, with equal mixing parameters.

If we define the indicator function as follows:

1 for ye Rmi.e., for Z.1 Qme-nT> 1'1 rm(Y) - (15)0 otherwise,

then, the expressions for P[E1], P[EA], can be written as follows:

VAP[E1 ] = M E [ 1 - (n(y)]P(YXIXm) (16)
--- m .1 -.

M
V2 t(M - 1 )-' 1P[E2 ] = M E(Frn(Y)Sm(Y)(M - 1)" (17)

M-1 y

Note that

ES,(y)-( M -1)1 1 and Sm(y)( M - 1 ) 0.
Y

Hence, the normalized Sm behaves like a probability distribution function. We observe that

M

1 - V = M-' E £('D(Y)P(YIXm), (18)
M-1 y

M
1 - V2  M - E [1 - m(y)](M - 1)-" Sr,(Y) (19)

m,,1 y

For s > 0, we have the following bounds:

4Dr(Y) (Z;' QmenT) (20)

8



1 - 4D,(y)<( Qrn I ZmenT) (21)

Using the bounds of Equations 20 and 21 in Equations 16, 17, 18, and 19, we obtain the following

inequalities:

EI/_M-, E , O;'Z me (22)
m-1 y

M

1 - VrM- i F,(Zm Qme-nT) m, (23)
M.1 y

M 1 -nT' 8  -1

V2S'- M E E Z;I O m  , (24)
m-I y

1 - v - (Zm e enT)S(M 1) 1 S m . (25)

m-1 y

We define the following functions:

gim(s) = [(M -1 )-1 Zm Pm (26)
y

g2m(S) = E[(M- 1 )Z' Om]'(M - 1 )-Sm. (27)
y

We then obtain the following inequalities:

M

M

- V _M-l enTs(M - 1)-S E gm( -s), (29)
r-1

9



M

V2 <M-i e-nTs(M _ I) -s E gim(S) (30)
m-1

V M
- <M - 1 enTs(M - 1 )6 E g 2m( -s) (31)

m-1

We will utilize a form of Jensen's inequality (Korevaar 1968), which states the following:

az q _ 11 5Ea, q__l ,ajO.

If we introduce a new parameter p _> s, we have, by Jensen's inequality, the following:

gM(S) E [(MgE SIP- 1, 0 ; S mg1~s)= k l? I

Y k*m

PlS 8PMo0,1" ES { [(M - 1 )-1 Qk]}P (32)

Let also q sz 1 - s. By the same argument,

g2m(S) = -[(M -1i )Z,1 Qml 8(M - ) Sm
Y

= { - 1 ]S }

SE[S S.Z,' QS, F, [(M - 1 )_ 1 Pk (_s)q }q (33)

10



We consider probability transition matrices for which a finite lower bound exists to every entry.

Then, there exists a finite number B that is an upper bound to [Pm ]s , [SmZl ]. We

obtain the following upper bounds:

1 M(s) 5B -EPm-s{ [- 1,Qk]P}, (34)

g2 (s) < B -E 08 , [(M _ 1 )_1 -k](- (5

Multiplying by (M - I)5, we find the following:

Y k*m J

Note from Equations 26 and 28 that the products (M - 1)s g1m(s), (M - 1)-s g2m(s) appear at the

upper bounds; hence, we are interested in bounding them directly.

At this point, we need to resort to random coding arguments. As is customary, and following

Gallager's (1965) and Fomey's (1968) approaches, we choose a code at random by choosing

each input letter of each code word by a random selection in which the probability of choosing

input xk is pk. Denoting the average by an overbar, a modification of the approach in Forney's

paper (Forney 1968) yields the following:

(M - 1 )sf(s)B _ e PnR.[E(EPP1) .(pq /P)P ]n (38)

where

P = ( ,Pi, 0 {qjv)

11



are the true and assumed channel probability transition matrices, respectively. This is in
agreement with Fomey's bound if P = Q (matched case) and, hence, B = 1.

A similar upper bound is produced for { g2m (S) }"

( M - 1 ) ( M - 1 )-s 27,(s)! B_ B-exp(qnR)

where

q _l -s, p>_s>_O,s<l

and R = code rate; R = n 1 log M.

The upper bounds for V1, V2 averaged over the random choice of code words, are as follows:

V Ben(TS-PR) .[ E kp s (rqSvP)P](0-<: B E}]i- Epqj (40)

(M -1) V 2 .B en( q R - Ts) .( -s)lqYPP Pq [pPvqs] ] (41)

j k

Note that the previous bounds (Equations 40 and 41) will converge exponentially to zero if the

functions

f~s) =/ ~(P~ 8  Ev; P , 1 Z pts aO (42)

and

4(S) ( qv) , q>1 -ss O (43)

12



are both less than 1 for some (s, p, q) = (so, p0 , q). This is a sufficient condition for both

quantities V1, V2 to converge to zero for some random block code of size n, as n.->oo. We observe

that for any p, f1(O) = 1 and for q=1, f2(O) = 1.

A sufficient condition that both V and V2 converge exponentially to zero in spite of mismatch

is that for a pair (P, 0), we have the following:

min fl(s).(Ts- pR)<l , (44)

min f2(s).(qR - Ts)<1 , (45)

where the min are over all three parameters (p, q, s).

Due to the stated properties of f4(s), f2(s), it is always guaranteed that for P, 0 sufficiently

close, the bounds of Equations 40 and 41 will converge exponentially to zero as n becomes

infinite.

13
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